Products > RF for Mobile, WLAN, mmW > mmW & microWave Devices > Amplifiers > AMMC-5024

AMMC-5024

30 KHz - 40 GHz GaAs MMIC Traveling Wave Amplifier

Description	
MMC-5024 is a broadband PHEMT GaAs MMIC WA designed for medium output power and high gain ver the full 30 KHz to 40 GHz frequency range.	
he design employs a 9-stage, cascade-connected ET strycture to ensure flat gain and power as well as niform group delay.	
Lead (PB) Free RoHS 6 fully compliant	
	Lifecycle status: Active
Features	
Wide Frequency Range: 30 KHz - 40 GHz	
High Gain: 16 dB	
Gain Flatness: /- 0.75 dB	
Return Loss: Input: 13 dB; Output: 13 dB	
Medium Power: P-1dB = 22.5 dBm at 22 GHz	
Low Noise Figure: 3.7 dB at 26 GHz	
Applications	
Communication systems	
Microwave instrumentation	
Optical systems	
Broadband applications requiring flat gain and grou output port matches over the 30 KHz and 40 GHz	p delay with excellent input and frequency range

AMMC-5024

30 KHz – 40 GHz Traveling Wave Amplifier

Data Sheet

Description

Chip Size: Chip Size Tolerance: Chip Thickness: Pad Dimensions: 2350 x 1050 μm (92.5 x 41.3 mils) ±10 μm (±0.4 mils) 100 ± 10 μm (4 ± 0.4 mils) 80 x 80 μm (2.95 ± 0.4 mils)

Avago Technologies' AMMC-5024 is a broadband PHEMT GaAs MMIC TWA designed for medium output power and high gain over the full 30 KHz to 40 GHz frequency range. The design employs a 9-stage, cascade-connected FET structure to ensure flat gain and power as well as uniform group delay. E-beam lithography is used to produce uniform gate lengths of 0.15 μ m and MBE technology assures precise semiconductor layer control. For improved reliability and moisture protection, the die is passivated at the active areas.

Features

- Wide frequency range: 30 KHz-40 GHz
- High gain: 16 dB
- Gain flatness: ±0.75 dB
- Return loss: Input: 13 dB, Output: 13 dB
- Medium power: P-1dB = 22.5 dBm at 22 GHz
- Low noise figure: 4.6 dB at 26 GHz

Applications

- Communication systems
- Microwave instrumentation
- Optical systems
- Broadband applications requiring flat gain and group delay with excellent input and output port matches over the 30 KHz and 40 GHz frequency range

Absolute Maximum Ratings^[1]

Symbol	Parameters/Conditions	Units	Min.	Max.
V _{dd}	Positive Drain Voltage	V		10
I _{dd}	Total Drain Current	mA		340
V _{g1}	First Gate Voltage	V	-9.5	0
l _{g1}	First Gate Current	mA	-38	+1
V _{g2}	Second Gate Voltage	V	-3.5	+4
l _{g2}	Second Gate Current	mA	-20	
P _{in}	CW Input Power	dBm		17
T _{ch}	Operating Channel Temperature	°C		+150
T _b	Operating Backside Temperature	°C	-55	
T _{stg}	Storage Temperature	°C	-65	+165
T _{max}	Max. Assembly Temp (60 sec max)	°C		+300

Notes:

1. Absolute maximum ratings for continuous operation unless otherwise noted.

Symbol	Parameters and Test Conditions	Units	Min.	Тур.	Max.
I _{dss}	Saturated Drain Current (V_{dd} =7 V, V_{g1} =0 V, V_{g2} =open circuit)	mA	265	350	385
V _p	First Gate Pinch-off Voltage (V_{dd} =7 V, I_{dd} =30 mA, V_{g2} =open circuit)	V		-8.2	
V _{g2}	Second Gate Self-bias Voltage (V_{dd} =7 V, I_{dd} = 200 mA, V_{g2} =open circuit)	V		2.75	
I _{dsmin} (V _{g1})	First Gate Minimum Drain Current (V _{dd} =7 V, V _{g1} =-7 V, V _{g2} =open circuit)	mA		47	
I _{dsmin} (V _{g2})	Second Gate Minimum Drain Current (V_{dd} =7 V, V_{g1} =0 V, V_{g2} = -3.5 V)	mA		105	
θ_{ch-b}	Thermal Resistance ^[2] (Backside temperature, $T_b = 25^{\circ}C$)	°C/W		16.2	

AMMC-5024 DC Specifications/Physical Properties^[1]

RF Specifications for High Power Applications $^{[2,\,3]}$ (V_{dd}=7 V, I_{dd}(Q)=200 mA, Z_{in}=Z_{o}=50\Omega

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.
$ S_{21} ^2$	Small-signal Gain		dB	14	16	18
$\Delta S_{21} ^2$	Small-signal Gain Flatness		dB		±0.75	±2
RL _{in}	Input Return Loss		dB	12	16.9	
RL _{out}	Output Return Loss		dB	10	16.8	
$ S_{12} ^2$	Isolation		dB	26	28	
P _{-1dB}	Output Power @ 1 dB Gain Compression	f = 22 GHz	dBm	21	22.5	
P _{sat}	Saturated Output Power	f = 22 GHz	dBm	23	24.5	
OIP3	Output 3 rd Order Intercept Point, Rf _{in1} = Rf _{in2} = 2 dBm, f = 22 GHz, Δf = 2 MHz		dBm	27	30	
NF	Noise Figure (V_{ds} = 3V, I_{ds} = 140 mA)	f = 26 GHz f = 40 GHz	dB dB		4.6 7.2	6.5 9

RF Specifications for High Gain and Low Power Applications ^[2, 3] (V_{dd} =4 V, I_{dd} (Q)=160 mA, Z_{in} = Z_o =50 Ω)

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.
S ₂₁ ²	Small-signal Gain		dB		17.5	
$\Delta S_{21} ^2$	Small-signal Gain Flatness		dB		±1.5	
RL _{in}	Minimum Input Return Loss		dB		13	
RL _{out}	Minimum Output Return Loss		dB		13	
S ₁₂ ²	Isolation		dB		30	
P _{-1dB}	Output Power @ 1 dB Gain Compression	f = 22 GHz	dBm		17.3	
P _{sat}	Saturated Output Power	f = 22 GHz	dBm		20.5	
OIP3	Output 3 rd Order Intercept Point, Rf _{in1} = Rf _{in2} = 2 dBm, f = 22 GHz, Δf = 2 MHz		dBm		22.5	
NF	Noise Figure	f = 26 GHz f = 40 GHz	dB dB		3.7 5.5	

Notes:

Dackside temperature 1_b = 25 C unless otherwise noted.
Channel to board Thermal Resistance is measured using QFI method.
100% on-wafer RF test is done at frequency = 2, 10, 20, 30 and 40 GHz, except as noted.

^{1.} Backside temperature $T_b = 25^{\circ}C$ unless otherwise noted.

Figure 20. AMMC-5024 Bonding Pad Locations. (dimensions in micrometers)

Figure 21. AMMC-5024 Assembly Diagram.

Ordering Information

AMMC-5024-W10 = 10 devices per tray AMMC-5024-W50 = 50 devices per tray

